4.7 Article

Comparative analysis of conventional and low-GWP refrigerants with ionic liquid used for compression-assisted absorption cooling cycles

期刊

APPLIED THERMAL ENGINEERING
卷 172, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.applthermaleng.2020.115145

关键词

Renewable cooling; Waste cooling; Low global warming potential; Novel working pair; Ionic liquid; Compression-assisted absorption cycle

资金

  1. Research Grants Council of Hong Kong [CityU 21201119]
  2. Guangdong Basic and Applied Basic Research Foundation [2019A1515011177]

向作者/读者索取更多资源

To address the problems of conventional absorption technologies, various working pairs consisting of low-global-warming-potential hydrofluorocarbons/hydrofluoroolefins and ionic liquid were numerically investigated for two compression-assisted absorption cooling cycles driven by heat sources at lower temperatures. The property prediction model and thermodynamic performance model were established and verified. The performance improvements were evaluated and the compression ratio was optimized. With the compression-assisted absorption cycle, the coefficient of performance (COP) was enhanced from 0.191-0.463 to 0.366-0.670, while the minimum generation temperature was reduced by about 20 degrees C, reaching 45 degrees C. For both basic and compression-assisted absorption cycles, difluoromethane yielded the highest COP, followed by fluoroethane and 1,1-difluoroethane with slightly lower COPs; 2,3,3,3-tetrafluoropropene performed the worst in most conditions; 1,1,1,2-tetrafluoroethane performed worse than trans-1,3,3,3-tetrafluoropropene using the basic cycle but outperformed trans-1,3,3,3-tetrafluoropropene using the compression-assisted absorption cycle. The thermal COP varies similarly to but higher than the COP, while the mechanical COPs are much higher for all the working pairs, reaching 11-14 (R152a showing the highest) with a CR of 1.5. The mechanical COP decreases dramatically with the compression ratio. For the low-pressure compression-assisted absorption cycle with a generation temperature of 70 degrees C, the optimal compression ratios were 1.9-3.4 with the maximum COPs of 0.546-0.663 and were 1.3-2.2 with the maximum exergy COPs of 0.192-0.289. The low-pressure compression-assisted absorption cycle was better than the high-pressure compression-assisted absorption cycle due to the higher cycle efficiency and lower compressor discharge temperature. This study provides suggestions on the selection of compression-assisted absorption cycles, working pairs and optimal parameters for renewable/waste cooling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据