4.7 Article

Thermodynamic analysis of hybrid liquid air energy storage systems based on cascaded storage and effective utilization of compression heat

期刊

APPLIED THERMAL ENGINEERING
卷 164, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.applthermaleng.2019.114526

关键词

Liquid air energy storage; Heat recovery; Organic Rankine cycle; Kalina cycle; Compression heat

资金

  1. Foundation for Innovative Research Groups of the National Natural Science Foundation of China [51621065]
  2. Scientific and Technological Project of Qinghai Province [2017-GX-101]

向作者/读者索取更多资源

As a promising solution for large-scale energy storage, liquid air energy storage (LAES) has unique advantages of high energy storage density and no geographical constraint. In baseline LAES, the compression heat is surplus because of the low liquefaction ratio, which significantly influences its round-trip efficiency (RTE). In this paper, hybrid LAES systems based on the cascaded storage and effective utilization of compression heat is proposed and analyzed. In order to improve the storage temperature, cascaded-storage of compression heat is proposed. Meanwhile, the organic Rankine cycle (ORC) and Kalina cycle (KC) are considered to utilize the surplus compression heat to generate additional electricity. Based on the same conditions, the performances of the subcritical ORC using dry fluids, supercritical ORC using wet fluids, and KC are calculated and compared. It is found that the cascaded storage of compression heat can significantly increase the storage temperature and further improve the RTE of the system. Moreover, the RTE of the LAES system is increased by 10.9-19.5% owing to the additional power generation. The subcritical ORC using dry fluids is found to be more suitable in utilizing the surplus compression heat for its simple configuration and excellent performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据