4.7 Article

Experimental energy performance assessment of a solar desiccant cooling system in Southern Europe climates

期刊

APPLIED THERMAL ENGINEERING
卷 165, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.applthermaleng.2019.114579

关键词

Hybrid HVAC system; Solar desiccant cooling systems; Energy efficiency; Thermal solar system

资金

  1. European Union [857801, 03-857801]
  2. H2020 Societal Challenges Programme [857801] Funding Source: H2020 Societal Challenges Programme

向作者/读者索取更多资源

Solar desiccant cooling systems, SDEC, could be an effective alternative to conventional cooling systems, which mainly depend on electrical energy. The main objective of this work was to determine experimentally the seasonal coefficient of performance, SCOP, of a SDEC system composed of a desiccant wheel, an indirect evaporative cooler and a thermal solar system, to control indoor conditions in a research lab room. The dependence of coefficient of performance on outdoor air conditions and percentage of renewable energy used by the SDEC system were also analysed. Experimental tests were carried out for six weeks during spring and summer seasons in Martos, Spain. The experimental results showed that the SDEC system independently adjusted the temperature and humidity of the supply air. 75% of the energy consumed by this air handling system comes from renewable sources. A seasonal coefficient of performance of the SDEC system of 2 was obtained for the period analysed. It is shown that the higher the outdoor temperature, the higher instantaneous COPs is. These results suggest that the use of SDEC systems in hot climates, such as southern European climates, could contribute to achieve the EU's energy goals within the frame of Nearly Zero Energy Buildings.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据