4.7 Article

Reduced graphene oxide and zirconium carbide co-modified melamine sponge/paraffin wax composites as new form-stable phase change materials for photothermal energy conversion and storage

期刊

APPLIED THERMAL ENGINEERING
卷 163, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.applthermaleng.2019.114412

关键词

Photothermal conversion; Form-stable PCMs; Thermal energy storage; Reduced graphene oxide; Melamine sponge

资金

  1. National Natural Science Foundation of China [51590901, 51676103]
  2. Natural Science Foundation of Shanghai [17ZR1411000]
  3. Key Subject of Shanghai Polytechnic University (Material Science and engineering) [XXKZD1601, EGD18YJ0070]
  4. Gaoyuan Discipline of Shanghai-Environmental Science and Engineering (Resource Recycling Science and Engineering)

向作者/读者索取更多资源

Photothermal energy conversion and storage are crucial in solar collection systems. However, it is difficult for traditional media to balance high photothermal conversion, thermal conductivity and thermal energy storage. Considering the advantages of nanofluids (volumetric absorption systems) and PCMs (high latent storage density), we develop novel form-stable PCMs for solar collection systems and overcome the disadvantages of current systems, which take melamine sponge as supporting materials, paraffin wax as solid-liquid PCMs, reduced graphene oxide and zirconium carbide as solar absorption and thermal conduction additives. The results demonstrate that the rich network skeleton structure of reduced graphene oxide modified melamine sponge provides huge surface tension and capillary force to support paraffin wax for achieving the shape-stability before and after phase transition, and the latent enthalpy reaches 137 J/g. The composites PCMs with different content zirconium carbide show good photoabsorption, high thermal storage capacity and excellent heat transfer property. The photothermal conversion efficiency is up to 81% when doped with 0.01 wt% zirconium carbide. The maximum thermal conductivity of composites PCMs is 121% higher than that of paraffin wax. The reduced graphene oxide and zirconium carbide co-modified melamine sponge/paraffin wax composites show its great potential in solar energy utilization and storage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据