4.7 Article

Photo-thermal conversion characteristics of carbon black-ethylene glycol nanofluids for applications in direct absorption solar collectors

期刊

APPLIED THERMAL ENGINEERING
卷 163, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.applthermaleng.2019.114402

关键词

CB-EG nanofluid; Direct absorption solar collector; Photo-thermal conversion efficiency; Absorbed energy fraction

向作者/读者索取更多资源

Direct absorption solar collector (DASC) is a promising method of harvesting solar energy. Present work considers carbon black-ethylene glycol (CB-EG) based nanofluids as the working fluids for DASC applications. Nanofluids were synthesized by the two-step method. Various studies carried out in this work include long time homogeneity, energy absorption characteristic and transient temperature profiles as functions of fluid thickness, light exposure time and concentration of the nanoparticles. Improved absorption characteristics, compared with those of the base fluid, towards incident irradiance were observed in all cases. About 27.90% increment in overall photo-thermal conversion efficiency over that of the ethylene glycol (EG) alone is observed for the case of 15 ppm carbon black (CB) concentration with an exposure time of 1200 s. Measured data show increasing trends in local photo-thermal efficiency with the thickness of the liquid layer as well as with the concentration of the suspended nanoparticles. These studies confirm that CB-EG based nanofluids can be used as potential working fluids for DASCs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据