4.7 Article

Enhanced hydrogen storage properties of MgH2 by the synergetic catalysis of Zr0.4Ti0.6Co nanosheets and carbon nanotubes

期刊

APPLIED SURFACE SCIENCE
卷 504, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apsusc.2019.144465

关键词

Hydrogen storage; MgH2; Synergetic catalysis; Reversibility

资金

  1. National Natural Science Foundation of China [51801078, 51702300]
  2. National Science Foundation of Jiangsu Province [BK20180986, 17KJB480003, SJCX19_0614]
  3. Zhenjiang Key Laboratory of Marine Power Equipment Performance

向作者/读者索取更多资源

Transition metal nanoparticles have shown great catalytic effect on MgH2, yet excellent cyclic stability can be attached due to the addition of carbon nanotubes. In this paper, MgH2 + 10 wt% Zr0.4Ti0.6Co/5 wt% Carbon nanotubes (CNTs) composite is designed to investigate the synergistic modification of Zr0.4Ti0.6Co nanosheets and carbon nanotubes on the hydrogen storage performance of MgH2. Compared with pure MgH2, the initial hydrogen release temperature of MgH2 + 10 wt% Zr0.4Ti0.6Co /5 wt% CNTs composite decreases to 180 degrees C and the composite can quickly release 90% H-2 within 10 min at 300 degrees C. In addition, the completely dehydrogenated sample can absorb 3.51 wt% H-2 within 20 min under 3 Mpa hydrogen pressure at 125 degrees C. Ulteriorly, the activation energy values of dehydrogenation and rehydrogenation of MgH2 decrease to 70.5 +/- 7.8 kJ/mol and 35.8 +/- 3.8 kJ/mol on account of the presence of 10 wt% Zr0.4Ti0.6Co/5 wt% CNTs, which reasonably explains the remarkable reduction of the temperature for hydrogen sorption. Furthermore, the MgH2 + 10 wt% Zr0.4Ti0.6Co/5 wt% CNTs composite shows excellent cycling performance, indicative of potential application in practical hydrogen storage in the nearest future.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据