4.7 Article

Robust and recyclable macroscopic g-C3N4/cellulose hybrid photocatalysts with enhanced visible light photocatalytic activity

期刊

APPLIED SURFACE SCIENCE
卷 504, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apsusc.2019.144179

关键词

g-C3N4; Cellulose; Macroscopic porous photocatalyst; Charge transfer; Recyclability

资金

  1. Public Technology Research Plan of Zhejiang Province [LGF18E030003]
  2. National Natural Science Foundation of China [51672251]
  3. Fundamental Research Funds of Zhejiang Sci-Tech University [2019Q008]

向作者/读者索取更多资源

Robust, metal-free, macroscopic 3D porous g-C3N4/cellulose (CN/CE) hybrid photocatalyst was successfully fabricated by the co-assembly of g-C3N4 and cellulose substrate. The morphology, structure, mechanical property, optical and electrochemical performances, and photocatalytic activity of the CN/CE were investigated in detail. The obtained CN/CE hybrid photocatalyst possessed homogeneous 3D interconnected network structure, excellent mechanical strength and considerable recyclability. Also, the CN/CE hybrid photocatalyst exhibited both an excellent adsorption capacity and improved photocatalytic activity toward methylene blue (MB) degradation with degradation rate of 99.8%, much higher than that of pure g-C3N4 (54.2%). The enhanced photocatalytic performance of CN/CE derived from the synergistic effects of homogeneous 3D interconnected network structure and syncretic interfaces between g-C3N4 and cellulose, facilitating mass transport, light absorption and reactant adsorption, as well as the transfer of the photogenerated electrons. Moreover, the CN/CE hybrid photocatalyst indicated a high reusability and stability without significant reduction in its efficiency with nearly 96% of MB degradation after four cycles. This work not only demonstrated the importance of homogeneous interconnected network structure to prepare highly effective photocatalyst, but also provided a new insight into the approach for design and utilization of stable and recyclable metal-free photocatalyst for visible light derived contaminant degradation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据