4.7 Article

Two-step synthesis of well-ordered layered graphite oxide with high oxidation degree

期刊

APPLIED SURFACE SCIENCE
卷 507, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apsusc.2019.145049

关键词

Graphite; Graphite oxide; Electrochemical oxidation; Overoxidation; Modified Hummers method

资金

  1. National Science Centre, Poland [2017/25/B/ST8/01634]

向作者/读者索取更多资源

Chemical oxidation of graphite by strong oxidant in strong acid medium produces graphite oxide (GO) with a plausible oxidation degree, however the precursor is susceptible to exfoliation and structural deformations. In this work, we present a two-step preparation method of highly oxidized GO flakes with well-ordered layered structure. Firstly, graphite was electrooxidized in HClO4 electrolyte yielding electrochemically gathered graphite oxide (EGO). Next, EGO was chemically overoxidized by modified Hummers method to prepare overoxidized electrochemically gathered graphite oxide (OEGO). Due to the increased interlayer distances of EGO, MnO3+ ions are able to penetrate the interlayer spaces and oxidize the unreacted graphitic domains. Hence, the synthesized OEGO is characterized by minor structure deformation and high oxidation degree. In case of our investigations most of well-ordered layered domains have been preserved, in contrast to the GO obtained directly from graphite. It is also noted that the overoxidation of EGO mainly results in formation of hydroxyl and epoxy groups. Additionally, rinsing OEGO with acetone helps prevent the tearing of oxidized graphene layers by O-2 evolution arising from the reaction of H2O2 with MnO2 precipitated on the surface of water-washed samples.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据