4.7 Article

A two-dimensional MoS2/WSe2 van der Waals heterostructure for enhanced photoelectric performance

期刊

APPLIED SURFACE SCIENCE
卷 507, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apsusc.2019.145082

关键词

Heterojunction; MoS2; WSe2; Photoelectrochemistry; Liquid phase exfoliation

资金

  1. National Natural Science Foundation of China [11774288, 11974279, 61605160]
  2. Natural Science Foundation of Shaanxi Province [2017KCT-01, 2019JC-25, 2019JM-236]

向作者/读者索取更多资源

Fabricating a two-dimensional (2D) van der Waals heterostructure is an efficient strategy to improve the photoelectric performance of 2D materials, thus providing a new possibility for the photoanode material design in photoelectrochemistry (PEC) devices. Herein, transition metal dichalcogenide (TMD) MoS2/WSe2 heterojunction photoelectrodes are prepared via liquid-phase exfoliation and vacuum filtration. Linear sweep voltammetry, transient photocurrent, and open circuit potential measurements show that the heterojunction photoelectrodes have enhanced photocurrent intensity and improved photoresponse activity. Moreover, Nyquist impedance plots, Bode phase plots, and Mott-Schottky measurements demonstrate that the heterojunction samples have higher charge transfer rate and longer charge lifetime than MoS2 and WSe2. To reveal the mechanisms, the band alignment of MoS2/WSe2 heterojunction samples is established with the support of X-ray photoelectron spectroscopy and first-principles theory calculation. Accordingly, the improved PEC performance of the heterojunction photoanode is ascribed to the built-in electric field between MoS2 and WSe2 nanosheets, which promotes the photogenerated e-h pair separation and suppresses their recombination. This work verifies the PEC mechanism of MoS2/WSe2 heterojunction photoelectrodes, which is significant for the design of PEC devices based on TMD heterostructures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据