4.7 Article

Enhanced dielectric and energy storage properties of BaTiO3 nanofiber/polyimide composites by controlling surface defects of BaTiO3 nanofibers

期刊

APPLIED SURFACE SCIENCE
卷 501, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apsusc.2019.144243

关键词

BaTiO3 nanofibers; Surface defect; Polyimide; Energy storage

资金

  1. Natural Science Foundation of China [51462028]
  2. Natural Science Foundation of Inner Mongolia [2018JQ06]
  3. Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region [NJYT-17-A10, NJYT-17-B09]

向作者/读者索取更多资源

BaTiO3 (BT) nanofibers with different surface defects were prepared by electrospinning process through controlling the sintering atmospheres (Air, N-2 and H-2), and introduced into polyimide (PI) matrix to form composite films. The effects of different surface defects on dielectric and energy storage properties of PI composites were systematically investigated. The results showed that the fabricated composite films under a reducing (H-2) atmosphere exhibited excellent dielectric properties, compared with that under Air and O-2. The dielectric constant (epsilon(r)) of PI composite films with 20 wt% BT-fibers reached up to 17.6, while maintaining lower loss (tg delta = 0.006@ 100 kHz), which was about four times greater than that of pure PI (epsilon(r) = 4.1). When the content of BT-fiber was up to 15 wt%, the composite film exhibited a maximum energy storage density of U-e = 6.12 J/cm(3). These results provide an effective method to tune the dielectric and energy storage properties of ferroelectric/polymer composites.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据