4.7 Article

Ternary Bi2S3/MoS2/TiO2 with double Z-scheme configuration as high performance photocatalyst

期刊

APPLIED SURFACE SCIENCE
卷 499, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apsusc.2019.143938

关键词

Double Z-scheme; Heterojunction; Hydrogen production; Photodegradation; Methylene blue

资金

  1. Center of Excellence in Nanotechnology (CENT), King Fahd University of Petroleum and Minerals (KFUPM)

向作者/读者索取更多资源

Due to unique electron transport properties, nanostructured catalysts with certain morphology, such as nanotube, nanosheet and nanorods, have shown outstanding photocatalytic performance. Herein, preparation of ternary photocatalytic architecture is demonstrated using a facile microwave-assisted hydrothermal method. The as-prepared ternary photocatalyst (denoted as Bi2S3/MoS2/TiO2) comprises bismuth sulfide (Bi2S3) nanorods, molybdenum sulfide (MoS2) nanosheets, and titanium dioxide (TiO2) nanotubes. The photocatalytic performance of the as-prepared nanocomposite is evaluated by monitoring water splitting and dye degradation. The results show that the Bi2S3/MoS2/TiO2 exhibits stable and highly efficient photocatalytic hydrogen production under visible light, and photocatalytic degradation of methylene blue (MB) under sunlight. The photocatalytic performance of Bi2S3/MoS2/TiO2 is much better than that of TiO2, MoS2, or Bi2S3. The improved performance is correlated to the high surface area and the formation of the double Z-scheme heterostructure, which together render abundant catalytic sites and efficient charge separation with strong redox capability. Additionally, X-ray photoelectron spectroscopy and electron spin resonance spectroscopies, combined with reactive species trapping experiments, confirm that the surface charge transport in Bi2S3/MoS2/TiO2 occurs through the double Z-scheme approach. This work paves the way for designing more photocatalytic systems with double Z-scheme for high efficiency and wide practical applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据