4.6 Article

Effect of electron concentration on electrical conductivity in in situ Al-TiB2 nanocomposites

期刊

APPLIED PHYSICS LETTERS
卷 116, 期 1, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.5129817

关键词

-

向作者/读者索取更多资源

Electrical conductivity is important for the applications of metals containing nanoparticles, and a thorough understanding of how nanoparticles affect their electrical conductivity is much needed. In this paper, an in situ Al-TiB2 nanocomposite is used as a model system to study its electrical behavior from 10-300K with Hall scanning up to +/- 6 T. By experimentally identifying the respective contributions from the nanoparticle size, grain boundaries, dislocation density, and nanoparticle volume percentage, it suggests that a low volume percent of TiB2 nanoparticles can reduce the electron concentration significantly to decrease the electrical conductivity of the Al-TiB2 nanocomposites, while yielding less effect on the electron mobility. Moreover, the results show that the intrinsically enhanced electron-phonon interaction and the interfacial bound states by TiB2 nanoparticles play a role in lowering the electron concentration. This understanding of how nanoparticles affect the electrical conductivity provides useful insights into the rational design and optimization of metal matrix nanocomposites for numerous applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据