4.6 Article

Acoustoelectric charge transport at the LaAlO3/SrTiO3 interface

期刊

APPLIED PHYSICS LETTERS
卷 116, 期 1, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.5139307

关键词

-

资金

  1. European Union's Horizon 2020 research and innovation programme under Marie Skodowska-Curie Grant [642688]
  2. Netherlands Organisation for Scientific Research (NWO) through a Vrij Programma Grant (QUAKE) [680.92.18.04/7566]
  3. DESCO programme

向作者/读者索取更多资源

The two-dimensional electron system (2DES) formed at the interface of LaAlO3 (LAO) and SrTiO3 (STO), both band insulators in bulk, exhibits properties not easily attainable in conventional electronic materials. The extreme shallowness of the 2DES, only a few nanometers below the surface, opens up unique possibilities such as tunneling spectroscopy, local electronic sensing, and in situ patterning by manipulating the surface properties. It is particularly tempting to manipulate the charge carriers with surface acoustic wave (SAW) phonons, which are confined to the surface. However, the absence of intrinsic piezoelectricity in both LAO and STO complicates the electric generation of SAWs, as well as the induction of an acoustoelectric current. Here, we present robust acoustoelectric coupling between SAWs and the LAO/STO 2DES by using electrostriction in STO, induced by a dc electric field. Electromechanical coupling to the carriers is provided by phonon-induced modulation of the 2DES potential well, leading to SAW-induced carrier transport. The ability to control charge carriers with SAWs brings the versatile LAO/STO 2DES into reach of quantum acoustics, opening possibilities to study the interplay of nanoscale mechanical waves and the rich physics exhibited by nonpiezoelectric complex oxides, including superconductivity, magnetism, and correlated insulator states.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据