4.5 Article

Phase-controlled electromagnetically induced symmetric and asymmetric grating in an asymmetric three-coupled quantum well

期刊

APPLIED OPTICS
卷 58, 期 35, 页码 9662-9669

出版社

OPTICAL SOC AMER
DOI: 10.1364/AO.58.009662

关键词

-

类别

向作者/读者索取更多资源

Fraunhofer light diffraction of a weak probe field passing through an asymmetric three-coupled quantum well, which is driven by a standing wave and two coupling laser fields, is investigated. Depending on which transitions are coupled by the probe and standing field, two schemes are considered. It is demonstrated that owing to the closed-loop transition, optical properties and the diffraction pattern of the probe field in both schemes are highly affected by the relative phase of the applied fields and can be controlled by this parameter. Moreover, it is shown that the proposed schemes have multifunction capabilities. In the first scheme, as a result of varying relative phase, the electromagnetically induced absorption phase grating turns to the electromagnetically induced gain phase grating with remarkable efficiency, while in the latter scheme, a significant result is revealed: Tuning the relative phase can lead to inducing optical parity-time symmetry, which gives rise to an asymmetric diffraction grating. Such an all-optical phase-sensitive operation could be useful in optical switching and optical communications. (C) 2019 Optical Society of America

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据