4.6 Article

Vibration reduction evaluation of a linear system with a nonlinear energy sink under a harmonic and random excitation

期刊

出版社

SHANGHAI UNIV
DOI: 10.1007/s10483-020-2560-6

关键词

nonlinear energy sink (NES); Gauss-Legendre polynomial; transmissibility; percentage of energy absorption; O322

资金

  1. National Natural Science Foundation of China [11772205, 11572182]
  2. Liaoning Revitalization Talents Program of China [XLYC1807172]

向作者/读者索取更多资源

The nonlinear behaviors and vibration reduction of a linear system with nonlinear energy sink (NES) are investigated. The linear system is excited by a harmonic and random base excitation, consisting of a mass block, a linear spring, and a linear viscous damper. The NES is composed of a mass block, a linear viscous damper, and a spring with ideal cubic nonlinear stiffness. Based on the generalized harmonic function method, the steady-state Fokker-Planck-Kolmogorov equation is presented to reveal the response of the system. The path integral method based on the Gauss-Legendre polynomial is used to achieve the numerical solutions. The performance of vibration reduction is evaluated by the displacement and velocity transition probability densities, the transmissibility transition probability density, and the percentage of the energy absorption transition probability density of the linear oscillator. The sensitivity of the parameters is analyzed for varying the nonlinear stiffness coefficient and the damper ratio. The investigation illustrates that a linear system with NES can also realize great vibration reduction under harmonic and random base excitations and random bifurcation may appear under different parameters, which will affect the stability of the system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据