4.8 Article

A direct liquid fuel cell powered by 1,3-or 1,2-propanediol

期刊

APPLIED ENERGY
卷 262, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2020.114564

关键词

Alkaline-acid fuel cell; Alkaline fuel cell; Cation exchange membrane; Isomers; Propanediol

资金

  1. American Chemical Society Petroleum Research Fund [57700-UR5]

向作者/读者索取更多资源

In this work we compare the behavior of the 1,2 and 1,3 isomers of propanediol (PD) when electrochemically oxidized in alkaline media both in a 3 electrode electrochemical cell and in an operating split pH, alkaline-acid fuel cell with a cation exchange membrane. In the electrochemical cell, we use voltammetry and amperometry to determine that the 1,3-PD oxidizes nearly 3 times more efficiently than the 1,2-PD. In the operating fuel cell, we find that the maximum power density of the 1,3-PD is 185 mW cm(-2) at 60 degrees C with a Pt black cathode and 103 mW cm(-2) with a carbon black cathode. In contrast, the 1,2-PD isomer reaches only 102 mW cm(-2) with Pt cathode and 64 mW cm(-2) with carbon cathode. Previous work has primarily considered the 1,2-PD isomer, but recent improvements to the synthesis of 1,3-PD make it a promising fuel for better performance than the 1,2-PD isomer. In addition, the use of the split pH fuel cell makes both isomers viable for higher power demands than previously shown and with the option of using carbon black as the cathode material.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据