4.8 Article

Flexible thermoelectric generators for body heat harvesting - Enhanced device performance using high thermal conductivity elastomer encapsulation on liquid metal interconnects

期刊

APPLIED ENERGY
卷 262, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2019.114370

关键词

Thermoelectric generators; Body heat harvesters; Flexible electronics; Thermally conductive polymers

资金

  1. Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), a Nano-Systems Engineering Research Center - National Science Foundation [EEC1160483]

向作者/读者索取更多资源

This paper reports flexible thermoelectric generators (TEGs) employing eutectic gallium indium (EGaIn) liquid metal interconnects encased in a novel, high thermal conductivity (HTC) elastomer. These TEGs are part of a broader effort to harvest thermal energy from the body and convert it into electrical energy to power wearable electronics. The flexible TEGs reported in this paper employ the same thermoelectric legs' used in rigid TEGs, thus eliminating the need to develop new materials specifically for flexible TEGs that often sacrifice the so-called figure of merit' for flexibility. Flexible TEGs reported here embed rigid thermoelectric legs' in soft and flexible packaging, using stretchable EGaIn interconnects. The use of liquid metal interconnects provides ultimate stretchability and low electrical resistance between the thermoelectric legs. The liquid metal lines are encased in a new stretchable silicone elastomer doped with both graphene nano-platelets and EGaIn to increase its thermal conductivity. This high thermal conductivity elastomer not only reduces the parasitic thermal resistance of the encapsulation layer but it also serves as a heat spreader, leading to 1.7X improvement in the output power density of TEGs compared to devices fabricated with a conventional elastomer. The device performance is further improved by a thin Cu layer acting as a heat spreader providing an additional 1.3X enhancement in the output power at 1.2 m/s air velocity (typical walking speed). Worn on the wrist, our best devices achieve power levels in excess of 30 mu W/cm(2) at an air velocity of 1.2 m/s outperforming previously reported flexible TEGs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据