4.8 Article

Impact of injector tip deposits on gasoline direct injection engine combustion, fuel economy and emissions

期刊

APPLIED ENERGY
卷 262, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2020.114538

关键词

Gasoline direct injection; Injector fouling; Tip surface deposits; Combustion; Particulate emission

资金

  1. National Natural Science Foundation of China [51636003]
  2. EPSRC [EP/N021746/1] Funding Source: UKRI

向作者/读者索取更多资源

Gasoline direct injection (GDI) engine development is facing the great challenges in both fuel economy and particulate emissions. Trade-off is often required in GDI engines to sacrifice fuel economy in order to meet the strict emission regulations. GDI injector deposits have been identified as a potential cause of increased particulate emissions. In this work, a series of experimental tests was conducted on a 1.5 L turbocharged GDI engine to further understand the effect of injector deposits. The deposits formed on the injector tip surface were removed after the 55-hour fouling test and their effects on fuel consumption, in-cylinder combustion, thermal efficiency and engine out emissions were investigated before and after the removal. The spray characteristics of an identical injector under clean and fouled conditions were examined and the deposits inside the injector nozzle holes were observed by a scanning electron microscope. The test injectors were mildly fouled with an average of 1.5% flow rate loss and 1.84% injection pulse width increase. After removing the injector tip surface deposits, the engine combustion phase became advanced and the peak in-cylinder pressure increased. The combustion efficiency was close to 98% and showed no significant change. Although the indicated thermal efficiency was only slightly improved by 0.31-0.44% after removing the tip surface deposits, the particulate emissions were significantly affected and reduced by up to around 45%. At the meantime, NOx emissions moderately increased by approximately 12% after removal and no significant change occurred in the THC and CO emissions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据