4.8 Article

An optical investigation of Fischer-Tropsch diesel and Oxymethylene dimethyl ether impact on combustion process for CI engines

期刊

APPLIED ENERGY
卷 260, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2019.114238

关键词

E-fuels; Soot reduction; OMEX; FT diesel; Oxygenated fuels; Optical engines; Optical Techniques

资金

  1. Generalitat Valenciana through the Programa Santiago Grisolia [GRISOLIAP/2018/142]

向作者/读者索取更多资源

Synthetic fuels (E-fuels) have shown to be an interesting alternative to replace the fossil diesel fuel due to its CO2 reduction potential as well as for their capability to diminish the soot production and therefore for improving the soot-NOX trade-off in Compression Ignition engines. Thus, the main objective of this paper was to better understand the combustion process and the in-cylinder soot formation of two of the most popular E-fuels currently: Fischer-Tropsch (FT) diesel and Oxymethylene dimethyl ether (OMEX). To achieve this aim, a single cylinder optical CI engine with a commercial piston geometry was used. Thee optical techniques (Natural Luminosity-NL, OH* chemiluminescence and 2-color pyrometry) were applied to analyze the combustion evolution and quantify the soot formation at different loads (1.5, 4.5 and 7.5 bar IMEP). OMEX presented the largest injection duration due to the low LHV. For the NL analysis, OMEX showed the lowest light intensity for the three loads tested, indicating a very low soot production. Despite of the low NL intensity, it presented the highest OH* chemiluminescence signal, indicating a higher presence of near-stoichiometric zones due to the high amount of oxygen. Regarding FT diesel, it showed a combustion behavior similar to the commercial diesel. NL, OH* and 2-color technique analysis indicated that for the three conditions tested, FT diesel presented lower soot production and a faster soot oxidation than commercial diesel.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据