4.8 Article

Borehole water level model for photovoltaic water pumping systems

期刊

APPLIED ENERGY
卷 258, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2019.114080

关键词

Photovoltaic water pumping; Groundwater resources; Data validated model; Sensitivity analysis; Optimal sizing; Lifecycle cost

资金

  1. French National research Agency (ANR) - IDEX Paris-Saclay [ANR-11-IDEX0003-02]

向作者/读者索取更多资源

Using photovoltaic energy to pump water from aquifers is an interesting solution to circumvent the low electricity grid coverage and provide improved domestic water access in off-grid areas in sub-Saharan Africa. When pumping and during the lifetime of a pumping installation, the borehole water level changes, which impacts the amount of energy required to extract water from the aquifer. In order to address alterations in energy requirements, this article develops a data-driven borehole water level model adapted to photovoltaic water pumping systems (PVWPS). The proposed model is applicable to all types of PVWPS and aquifers. It has been validated against experimental data from a pilot PVWPS located in a rural off-grid village in Burkina Faso having achieved more than 97% accuracy. Thanks to this borehole model, we have been able to assess the influence of the variability of groundwater resources on both the performance of PVWPS and on their optimal sizing. We show that the variation of the static water level can require a increase of the peak power of the PV modules of up to 100%. Nonetheless, the effect of the drawdown due to the pumping is negligible. This study can help companies, governments and non-governmental organizations to better take into account the variability and the sustainability of groundwater resources in the optimal sizing and monitoring of PVWPS.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据