4.8 Article

Reducing carbon footprint of deep-sea oil and gas field exploitation by optimization for Floating Production Storage and Offloading

期刊

APPLIED ENERGY
卷 261, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2019.114398

关键词

Carbon footprint; Distributed energy system; Life cycle assessment; Multi-objective mathematical programming; Floating Production Storage and Offloading

资金

  1. National Natural Science Foundation of China [51874325, 2016zx0503004-004]
  2. National Science and technology major project [19K15260]
  3. Japan Ministry of Education, Culture, Sports, Science and Technology

向作者/读者索取更多资源

Deep-sea oil and gas fields are acting as a vital role by providing substantial oil and gas resource, and Floating Production Storage and Offloading is an indispensable tool for the development of offshore oil and gas fields effectively. Here, Life Cycle Assessment is applied to evaluate environmental loads in the whole life cycle of the deep-sea oil and gas production. This paper explores the carbon footprint of Floating Production Storage and Offloading as the time axis. It is found that Floating Production Storage and Offloading is a conceptual product at the design stage and does not generate carbon emission, while the operational stage releases considerable emission by the fuel combustion process, accounting for 88.2% of the entire life cycle. To decrease this part of carbon emission, distributed energy system is considered as a promising choice because it integrates different energy resources and provides an economic and environmental energy allocation scheme to meet the energy demand. For the operation stage, this paper establishes a Multi-objective Mathematical Programming model to determine the selection and capacity of facilities with minimum annual total cost and carbon emissions by considering the energy balance and technical constraints. The model is validated by an example and solved by the weight method. According to designer's demand, distributed energy system can optimize economic objectives in a maximum range of 14.6%, and a maximum emission reduction of 4.53% can be expected compared with the traditional scheme. Sensitivity analysis shows that cost is more sensitive to natural gas price.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据