4.8 Article

Combined approach using mathematical modelling and artificial neural network for chemical industries: Steam methane reformer

期刊

APPLIED ENERGY
卷 255, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2019.113809

关键词

Steam methane reforming; Multiscale modelling; Dynamic simulation; Artificial neural network; Stochastic simulation

资金

  1. Korean Government Ministry of Trade, Industry Energy [10077467]
  2. Korea Gas Corporation
  3. Korea Evaluation Institute of Industrial Technology (KEIT) [10077467] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

The steam methane reformer (SMR) has become more attractive owing to the increasing importance of hydrogen production using natural gas. This study developed a rigorous dynamic model for an SMR including sub-models for a multiscale reactor, wall, and furnace. The developed SMR model was validated within a small error (lower than 4%) using the reference data such as temperature, pressure, mole fraction, and average heat flux. The results predicted by changing the catalyst parameters and operation conditions confirmed the reliability of the model. Therefore, the developed model was used to generate the SMR performance data using a deterministic and stochastic simulation with four main operating variables: the inlet flow rate, temperature, S/C ratio of the reactor side, and the inlet flow rate of the furnace side. To reduce the data dimensionality, the resultant dataset was analyzed using the principle components based on a singular value decomposition method. Artificial neural network (ANN) trained through 81 datasets was applied for the feed-forward back propagation of a neural network to map the relationship between the operating variables and predicted outputs. And the ANN relation predicted the outputs (temperature, velocity, pressure, and mole fraction of components) with higher than 98.91% accuracy. Furthermore, the computational time was significantly reduced from 1200 s (dynamic simulation) to 2 s (ANN). The developed methodology can be applied not only for the online operation and optimization of a reformer with high accuracy but also for the design of a hydrogen production system at low computational cost.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据