4.8 Article

An applicable approach to mitigate pressure rise rate in an HCCI engine with negative valve overlap

期刊

APPLIED ENERGY
卷 257, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2019.114018

关键词

HCCI; Negative valve overlap; Boost; Pressure rise rate; Direct injection

资金

  1. project Lublin University of Technology (Poland) - Regional Excellence Initiative - Polish Ministry of Science and Higher Education [030/RID/2018/19]

向作者/读者索取更多资源

Low-temperature combustion in a homogeneous-charge compression-ignition (HCCI) engine offers high thermal efficiency while cutting off emissions. However, HCCI's feasibility is hampered by excessive peak pressure rise rates under high load, causing combustion noise and possible engine damage. This study considers extending the high-load limit in a boosted HCCI engine accommodating variable valve timing and fuel reforming during negative valve overlap. Three techniques are evaluated on a research engine: (i) exhaust valve timing retardation (ii) boost pressure adjustment and (iii) reduction of fuel subjected to reforming. Two load regimes are explored: a mid-load point with indicated mean effective pressure of 0.61 MPa; and high-load conditions achieved by 25% more fuelling. The former is often reported as boundary condition for HCCI's, the latter is usually far beyond the acceptable pressure rise rate limit. Results indicate that strategies (i) and (iii) offer a trade-off-free solution for high-load extension. This can be realized as a supervisory, in-cylinder pressure based, control function. Independently of the pressure rise rate mitigation method considered, two key variables are crucial for closed-loop control: the in-cylinder volume at 50% fuel burnt and the combustion duration. They are closely coupled and can be real-time calculated using well-established control framework based on sensing the combustion timing. The expansion rate and differences in fuel mass subjected to reforming are secondary for pressure rise rate estimation and should be considered if greater accuracy is required.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据