4.8 Article

Ti3C2 Mxene/porous g-C3N4 interfacial Schottky junction for boosting spatial charge separation in photocatalytic H2O2 production

期刊

APPLIED CATALYSIS B-ENVIRONMENTAL
卷 258, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apcatb.2019.117956

关键词

-

资金

  1. Program for the National Natural Science Foundation of China [81773333, 51521006, 51879101, 51579098, 51779090, 51709101, 51809090, 51278176, 51378190]
  2. National Program of Top-Notch Young Professionals of China (2014)
  3. Program for Changjiang Scholars and Innovative Research Team in University [IRT-13R17]
  4. Hunan Provincial Science and Technology Plan Project [2018SK20410, 2017SK2243, 2016RS3026]
  5. Fundamental Research Funds for the Central Universities [531119200086, 531118010114, 531107050978]

向作者/读者索取更多资源

The development of efficient photocatalysts for the production of hydrogen peroxide (H2O2) is a promising strategy to realize solar-to-chemical energy conversion. Graphitic carbon nitride (g-C3N4) presents giant potential for photocatalytic H2O2 production, but the sluggish charge separation depresses its photocatalytic performance. Herein, an interfacial Schottky junction composed of Ti3C2 nanosheets and porous g-C3N4 nanosheets (TC/pCN) is constructed by a facile electrostatic self-assembly route to significantly boost the spatial charge separation to promote the activation of molecular oxygen for H2O2 production. As the optimal sample, TC/pCN-2 possesses the highest H2O2 production rate (2.20 mu mol L-1 min(-1)) under visible light irradiation (lambda > 420 nm), which is about 2.1 times than that of the porous g-C3N4. The results of superoxide radical detection and rotating disk electrode measurement suggest that the two-step single-electron reduction of oxygen is the predominant reaction step during this photocatalytic H2O2 production process. The enhanced photocatalytic performance is ascribed to the formation of Schottky junction and subsequent built-in electric field at their interface, which accelerate the spatial charge separation and restrain the charge recombination. This work provides an in-depth understanding of the mechanism of photocatalytic H2O2 production, and gives ideas for the design of highly active materials for photocatalytic H2O2 production.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据