4.8 Article

A biomimetic nanoleaf electrocatalyst for robust oxygen evolution reaction

期刊

APPLIED CATALYSIS B-ENVIRONMENTAL
卷 259, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apcatb.2019.118017

关键词

Biomimetic nanoleaf; Layered double hydroxide; Electrocatalysis; Oxygen evolution reaction; Water splitting

资金

  1. National Research Foundation of Korea [NRF-2019R1A2C2002156]

向作者/读者索取更多资源

Oxygen evolution reaction (OER) is a key process in various advanced technologies for renewable energy conversion, such as water splitting and metal-air batteries. However, as a four-electron coupled reaction, the OER is kinetically sluggish and limited by its high overpotential and low efficiency. The design of novel nanostructured electrocatalysts is highly desirable to promote OER kinetics. Herein, a bio-inspired nanoleaf electrocatalyst has been successfully achieved for the first time by in situ growing ultrathin NiCo layered double hydroxide (LDH) nanosheets on CuO nanowires. Attributed to the mechanical support of CuO nanowire veins, the NiCo LDH lamina presents a large lateral size (more than 10 mu m) and unique hierarchical structure that consisted of ultrathin nanosheets with numerous exposed edges. The CuO veins distributed across the LDH lamina can serve as the fast path for charge transfer and significantly promote the LDH conductivity. Compared to the conventional NiCo LDH nanosheets, the novel nanoleaves with enlarged electrochemical surface area, edge-rich active sites, and improved conductivity exhibit greatly enhanced OER performances with an impressive 9.3 fold enhanced activity, much lower overpotential of 262 mV at 10 mA cm(-2), as well as good stability and flexibility. The biomimetic nanoleaf structures and the corresponding design strategy can be broadly applied to other functional 2D materials for advanced applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据