4.7 Article

Redox Control of Proteolysis During Inactivity-Induced Skeletal Muscle Atrophy

期刊

ANTIOXIDANTS & REDOX SIGNALING
卷 33, 期 8, 页码 559-569

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/ars.2019.8000

关键词

oxidative stress; reactive oxygen species; antioxidants; proteolysis; calpain; autophagy

资金

  1. National Institutes of Health [R21AR064956, R21AR073956]

向作者/读者索取更多资源

Recent Advances: Disuse skeletal muscle atrophy occurs due to both accelerated proteolysis and decreased protein synthesis with proteolysis playing a leading role in some types of inactivity-induced atrophy. Although all major proteolytic systems are involved in inactivity-induced proteolysis in skeletal muscles, growing evidence indicates that both calpain and autophagy play an important role. Regulation of proteolysis in skeletal muscle is under complex control, but it is established that activation of both calpain and autophagy is directly linked to oxidative stress. Critical Issues: In this review, we highlight the experimental evidence that supports a cause and effect link between reactive oxygen species (ROS) and activation of both calpain and autophagy in skeletal muscle fibers during prolonged inactivity. We also review the sources of oxidant production in muscle fibers during inactivity-induced atrophy, and provide a detailed discussion on how ROS activates both calpain and autophagy during disuse muscle wasting. Future Directions: Future studies are required to delineate the specific mechanisms by which ROS activates both calpain and autophagy in skeletal muscles during prolonged periods of contractile inactivity. This knowledge is essential to develop the most effective strategies to protect against disuse muscle atrophy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据