4.8 Article

Enhanced Thermometric Sensor for Arsenate Analysis Based on Dual Temperature Readout Signaling Strategy

期刊

ANALYTICAL CHEMISTRY
卷 92, 期 6, 页码 4672-4680

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.0c00358

关键词

-

资金

  1. National Natural Science Foundation of China [21665023, 21765013, 21565021]
  2. Program for Chang Jiang Scholars, Ministry of Education of China

向作者/读者索取更多资源

New methods for portable detection of arsenate are still in urgent need. Herein, we explored a simple but sensitive thermometric strategy for arsenate determination without complex instruments and skilled technicians. Cobalt oxyhydroxide (CoOOH) nanoflakes, can ingeniously decompose hydrogen peroxide into oxygen in a sealed reaction vessel, accompanied by marked pressure and significant temperature increase due to the exothermic reaction effect (Delta H = -98.2 kJ/mol). The increased pressure then compelled a certain amount of H2O overflowing from the drainage device into another vessel, leading to a significant temperature decrease due to the preloaded ammonium nitrate (NH4NO3) and its good dissolution endothermic effect (Delta H = 25.4 kJ/mol). In the presence of arsenate, the catalytic activity of CoOOH nanoflakes for H2O2 decomposition was inhibited dramatically, resulting in an obvious decrease of the pressure, weighting water and temperature response. The two temperature responses with increasing and decreasing feature were easily measured through a common thermometer, and exhibited an effective signaling amplification via coupling both signal-on and signal-off temperature readout elements. The obtained dual superimposing temperature readout exhibits a good linear with the concentration of arsenate with a lower detection limit (51 nM, 3.8 ppb). Compared to the inductively coupled plasma mass spectrometry, this enhanced thermometric strategy provides a simple, rapid, convenient, low cost, and portable platform for sensing arsenate in real environmental water.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据