4.8 Article

Rational Design of High-Performance Donor-Linker-Acceptor Hybrids Using a Schiff Base for Enabling Photoinduced Electron Transfer

期刊

ANALYTICAL CHEMISTRY
卷 92, 期 2, 页码 2019-2026

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.9b04434

关键词

-

资金

  1. National Natural Science Foundation of China [21675024, 21804021]
  2. Natural Science Foundation of Fujian Province [2017J01575, 2019J01304]
  3. Medical Elite Cultivation Program of Fujian [2018-1-68]

向作者/读者索取更多资源

Donor-linker-acceptor (D-L-A)-based photoinduced electron transfer (PET) has been frequently used for the construction of versatile fluorescent chemo/biosensors. However, sophisticated and tedious processes are generally required for the synthesis of these probes, which leads to poor design flexibility. In this work, by exploiting a Schiff base as a linker unit, a covalently bound D-L-A system was established and subsequently utilized for the development of a PET sensor. Cysteamine (Cys) and N-acetyl-l-cysteine (NAC) costabilized gold nanoclusters (Cys/NAC-AuNCs) were synthesized and adopted as an electron acceptor, and pyridoxal phosphate (PLP) was selected as an electron donor. PLP can form a Schiff base (an aldimine) with the primary amino group of Cys/NAC-AuNC through its aldehyde group and thereby suppresses the fluorescence of Cys/NAC-AuNC. The Rehm-Weller formula results and a HOMO-LUMO orbital study revealed that a reductive PET mechanism is responsible for the observed fluorescence quenching. Since the pyridoxal (PL) produced by the acid phosphatase (ACP)-catalyzed cleavage of PLP has a weak interaction with Cys/NAC-AuNC, a novel turn-on fluorescent method for selective detection of ACP was successfully realized. To the best of our knowledge, this is the first example of the development of a covalently bound D-L-A system for fluorescent PET sensing of enzyme activity based on AuNC nanoprobes using a Schiff base.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据