4.8 Article

V2O5 Nanobelts Mimick Tandem Enzymes To Achieve Nonenzymatic Online Monitoring of Glucose in Living Rat Brain

期刊

ANALYTICAL CHEMISTRY
卷 92, 期 6, 页码 4583-4591

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.9b05872

关键词

-

资金

  1. National Natural Science Foundation [21575090]
  2. High-level Teachers in Beijing Municipal Universities in the Period of 13th Five-year Plan [CITTCD20190330]
  3. Scientific Research Project of Beijing Educational Committee [KM201810028008]
  4. Youth Innovative Research Team of Capital Normal University

向作者/读者索取更多资源

The continuous detection of glucose is significant for revealing its role in neuron protection and for diagnosis of various diseases. In this study, for the first time, a nonenzymatic online optical detection platform (OODP) for glucose measurement in rat brain utilizing the tandem enzyme activity of V2O5 nanobelts is developed. V2O5 nanobelts were synthesized via a facile solvothermal strategy, and for the first time it is found that the V2O5 nanobelts possess dual enzyme-like activity, i.e., glucose oxidase (GOx)-like and peroxidase-like activity, and can act as a tandem nanozyme. To investigate the mechanisms of the GOx-like property, we built an adsorption model, and the RPBE density functional calculations indicate that the glucose molecule can be adsorbed on the V2O5 plane. Based on the ability of V2O5 nanobelts to mimick tandem enzymes, a nonenzymatic online optical detection platform (OODP) for the continuous monitoring of glucose in rat brain was designed, which exhibits excellent stability, high selectivity, and a wide linear detection range from 0.2 to 5 mM and records cerebral glucose alterations in the calm/ischemia model. This facile but reliable nonenzymatic online optical glucose measurement compares favorably with natural enzyme-based online electrochemical glucose analytical systems, and its ready adoption by physiologists and pathologists will facilitate the understanding of brain function and the pathogenesis of diabetes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据