4.7 Article

DNA aptamers targeting Leishmania infantum H3 protein as potential diagnostic tools

期刊

ANALYTICA CHIMICA ACTA
卷 1107, 期 -, 页码 155-163

出版社

ELSEVIER
DOI: 10.1016/j.aca.2020.02.012

关键词

Aptamers; Histone 3; Leishmania infantum; Diagnostic; Enzyme-linked oligonucleotide assay

资金

  1. Fondo de Investigaciones Sanitarias of Ministerio de Ciencia e Innovacion (Spain) [PI05/0453]
  2. Fundacion Ramon Areces
  3. Consejeria de Sanidad (CAM)
  4. Banco de Santander

向作者/读者索取更多资源

Leishmaniasis is a disease caused by a parasite of the genus Leishmania that affects millions of people worldwide. These parasites are characterized by the presence of a DNA-containing granule, the kinetoplastid, located in the single mitochondrion at the base of the cell's flagellum. Interestingly, these flagellates do not condense chromatin during mitosis, possibly due to the specific molecular features of their histones. Although histones are extremely conserved proteins, kinetoplastid core histone sequences diverge significantly from those of higher eukaryotes. This divergence makes kinetoplastid core histones potential diagnostic and/or therapeutic targets. Aptamers are short single-stranded nucleic acids that are able to recognize target molecules with high affinity and specificity. Their binding capacity is a consequence of the particular three-dimensional structure acquired depending on their sequence. These molecules are currently used for detection, diagnosis and therapeutic purpose. Starting from a previously obtained ssDNA aptamer population against rLiH3 protein we have isolated two individual aptamers, AptLiH3#4 and AptLiH3#10. Next, we have performed ELONA, Western blot and slot blot assays to establish aptamer specificity and affinity for LiH3 histone. In addition, ELONA assays using peptides corresponding to overlapped sequences of LiH3 were made to map the aptamers:LiH3 interaction. Finally, different assays using aptamers were performed in order to evaluate the possibility of using these aptamers as sensing molecule to recognize the endogenous protein LiH3. Our results indicate that both aptamers have high affinity and specificity for the target and are able to detect the endogenous LiH3 histone protein in promastigotes lysates. In silico analysis reveals that these two aptamers have different potential secondary structure among them, however, both of them are able to recognize the same peptide sequences present in the protein. In conclusion, our findings indicate that these aptamers could be used for LiH3 histone detection and, in consequence, as potential biosensing molecules in a diagnostic tool for leishmaniasis. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据