4.7 Article

Ag@Fe3O4@C nanoparticles for multi-modal imaging-guided chemo-photothermal synergistic targeting for cancer therapy

期刊

ANALYTICA CHIMICA ACTA
卷 1086, 期 -, 页码 122-132

出版社

ELSEVIER
DOI: 10.1016/j.aca.2019.08.035

关键词

Ag@Fe3O4@C; NIR absorbance; DOX; Chemo-photothermal; MR imaging

资金

  1. Foundation of Jiangsu Collaborative Innovation Center of Biomedical Functional Materials

向作者/读者索取更多资源

Novel multifunctional core-shell nanoparticles (NPs) have attracted widespread attention due to their easy-to-modify surface properties and abundant functional groups. This study introduces a facile approach to synthesize Ag@ iron oxide (Fe3O4) @C NPs, and modify with amino-poly (ethylene glycol) (PEG)-carboxyl and folate (FA) on the exposed carbon surface to produce high contrast for excellent stability, good biocompatibility, cancer cell targeting, and synergistic treatment. The multi-armed PEG at the edge of Ag@Fe3O4@C NPs provides the materials an excellent capacity for doxorubicin (DOX) loading. The carbon layer could be used as a photothermal reagent due to its excellent near-infrared (NIR) absorbance capacity, and Fe3O4 was used as a reagent for magnetic resonance (MR) imaging. In vivo combination therapy with this agent was administered in a mouse tumor model, and a remarkable synergistic antitumor effect that is superior to that obtained by monotherapy was achieved. Concerning these features together, these unique multifunctional Ag@Fe3O4@C-PEG-FA/DOX NPs could be regarded as an attractive nanoplatforms for chemo-photothermal synergistic tumor therapy with dual-modal fluorescence and MR imaging-guided targeting. (C) 2019 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据