4.7 Article

Conservation tillage increases yield and precipitation use efficiency of wheat on the semi-arid Loess Plateau of China

期刊

AGRICULTURAL WATER MANAGEMENT
卷 231, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.agwat.2020.106024

关键词

Conservation tillage; Soil evaporation; Transpiration; Grain yield; Precipitation use efficiency

资金

  1. Research Program of the Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University [GSCS-2019-Z04, GSCS-2019-09, GSCS-2017-4]
  2. National Natural Science Foundation of China [31761143004, 31660373]
  3. Department of Education of Gansu Province [2017C-12]

向作者/读者索取更多资源

Drought is a major limiting factor for rainfed spring wheat production on the semiarid Loess Plateau of China. Suitable tillage practices are important for improving precipitation use efficiency (PUE), which is the ratio of grain yield to annual precipitation. To obtain a better understanding of the effects of conservation tillage practices on PUE on the semiarid Loess Plateau, PUE was divided into five steps: precipitation storage efficiency, farmland water consumption rate, ratio of transpiration to evapotranspiration, crop transpiration efficiency, and harvest index. Six tillage practices were assessed in this paper, including conventional tillage with no straw (T), no-till with straw cover (NTS), no-till with no straw (NT), conventional tillage with straw incorporated (TS), conventional tillage with plastic mulch (TP), and no-till with plastic mulch (NTP), based on a long-term experiment initiated in 2001. The impact of tillage practices on soil quality, soil water storage, soil evaporation, biomass yield, and grain yield of spring wheat were monitored in 2015 and 2016. The results show that NTS improved soil quality and soil water storage before sowing. No-till with plastic mulch and NTS increased evapotranspiration but decreased evaporation, thus optimizing precipitation storage efficiency, the farmland water consumption rate, the ratio of transpiration to evapotranspiration, and crop transpiration efficiency, which gave rise to greater aboveground dry matter accumulation and more dry matter accumulation in grain. As a result, grain yield under NTS and NTP was significantly increased by 45 and 41 % compare to T, respectively, with corresponding improvements in PUE of 43 and 39 %. Therefore, both NTS and NTP have potential to substantially increase grain yield of spring wheat and PUE. However, for sustainable intensification in the long-run, NTS is the best combination of tillage and soil surface management for spring wheat production on the semi-arid Loess Plateau of China.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据