4.7 Article

Nonlinear resonance of FG multilayer beam-type nanocomposites: Effects of graphene nanoplatelet-reinforcement and geometric imperfection

期刊

AEROSPACE SCIENCE AND TECHNOLOGY
卷 98, 期 -, 页码 -

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.ast.2020.105702

关键词

Nonlinear vibration; Functionally graded nanocomposite; Graphene nanoplatelet; Geometric imperfection; Nanobeam

向作者/读者索取更多资源

In this paper, the nonlinear dynamic response of a FG multilayer beam-type nanocomposite reinforced with graphene nanoplatelet (GNP) by considering the initial geometric imperfection is investigated on the basis of nonlocal strain gradient Euler-Bernoulli beam theory. Four patterns of GNP distribution incorporating the uniform distribution (UD) and O-, X-, and A- FG pattern distributions are taken into account and the effective elastic properties of the beam-type nanocomposite are evaluated in the framework of Halpin-Tsai scheme. The first-order vibrational mode is employed to represent the initial geometric imperfection of the nonlinear FG beam-type nanocomposite. Correspondingly, the nonlinear amplitude-frequency response of the imperfect FG multilayer beam-type nanostructures subjected to the excitation resonance is analyzed with the aid of multiple scale method. Firstly, the present model is validated with a comparison of two previous works. Then, a comprehensive investigation is conducted to evaluate the effects of GNP distributed pattern, weight fraction of GNPs, geometric imperfection amplitude, boundary condition, excitation amplitude, nonlocal and strain gradient size scale parameters on the nonlinear frequency-response of FG multilayer beam-type nanostructures. The current work is beneficial for the application of GNP as reinforcement to enhance mechanical performances of nanostructures. (C) 2020 Elsevier Masson SAS. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据