4.8 Article

Electric-Field-Induced Ionic Sieving at Planar Graphene Oxide Heterojunctions for Miniaturized Water Desalination

期刊

ADVANCED MATERIALS
卷 32, 期 16, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201903954

关键词

2D layered materials; heterostructures; ion transport; nanofluidics; water desalination

资金

  1. National Natural Science Foundation of China [21975268, 21522108, 11290163]

向作者/读者索取更多资源

Layered graphene oxide membranes (GOMs) offer a unique platform for precise sieving of small ions and molecules due to controlled sub-nanometer-wide interlayer distance and versatile surface chemistry. Pristine and chemically modified GOMs effectively block organic dyes and nanoparticles, but fail to exclude smaller ions with hydrated diameters less than 9 angstrom. Toward sieving of small inorganic salt ions, a number of strategies are proposed by reducing the interlayer spacing down to merely several angstroms. However, one critical challenge for such compressed GOMs is the extremely low water flux (<0.1 Lm(-2) h(-1) bar(-1)) that prevents these innovative nanomaterials from being used in real-world applications. Here, a planar heterogeneous graphene oxide membrane (PHGOM) with both nearly perfect salt rejection and high water flux is reported. Horizontal ion transport through oppositely charged GO multilayer lateral heterojunction exhibits bi-unipolar transport behavior, blocking the conduction of both cations and anions. Assisted by a forward electric field, salt concentration is depleted in the near-neutral transition area of the PHGOM. In this situation, deionized water can be extracted from the depletion zone. Following this mechanism, a high rejection rate of 97.0% for NaCl and water flux of 1529 Lm(-2) h(-1) bar(-1) at the outlet via an inverted T-shaped water extraction mode are achieved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据