4.8 Article

Controlling Defects in Continuous 2D GaS Films for High-Performance Wavelength-Tunable UV-Discriminating Photodetectors

期刊

ADVANCED MATERIALS
卷 32, 期 7, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201906958

关键词

chemical vapor deposition; defects; degradation; gallium sulfide; large-bandgap 2D semiconductors; photodetectors; stability

资金

  1. European Research Council [725258]
  2. EPSRC [EP/R001677/1, EP/M015173/1, EP/J018694/1, EP/J00541X/2] Funding Source: UKRI

向作者/读者索取更多资源

A chemical vapor deposition method is developed for thickness-controlled (one to four layers), uniform, and continuous films of both defective gallium(II) sulfide (GaS): GaS0.87 and stoichiometric GaS. The unique degradation mechanism of GaS0.87 with X-ray photoelectron spectroscopy and annular dark-field scanning transmission electron microscopy is studied, and it is found that the poor stability and weak optical signal from GaS are strongly related to photo-induced oxidation at defects. An enhanced stability of the stoichiometric GaS is demonstrated under laser and strong UV light, and by controlling defects in GaS, the photoresponse range can be changed from vis-to-UV to UV-discriminating. The stoichiometric GaS is suitable for large-scale, UV-sensitive, high-performance photodetector arrays for information encoding under large vis-light noise, with short response time (<66 ms), excellent UV photoresponsivity (4.7 A W-1 for trilayer GaS), and 26-times increase of signal-to-noise ratio compared with small-bandgap 2D semiconductors. By comprehensive characterizations from atomic-scale structures to large-scale device performances in 2D semiconductors, the study provides insights into the role of defects, the importance of neglected material-quality control, and how to enhance device performance, and both layer-controlled defective GaS0.87 and stoichiometric GaS prove to be promising platforms for study of novel phenomena and new applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据