4.8 Article

The Role of Reverse Intersystem Crossing Using a TADF-Type Acceptor Molecule on the Device Stability of Exciplex-Based Organic Light-Emitting Diodes

期刊

ADVANCED MATERIALS
卷 32, 期 9, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201906614

关键词

exciplexes; operational stability; organic light-emitting diodes; thermally activated delayed fluorescence

资金

  1. Japan Science and Technology Agency (JST), ERATO, Adachi Molecular Exciton Engineering Project

向作者/读者索取更多资源

Exciplex system exhibiting thermally activated delayed fluorescence (TADF) holds a considerable potential to improve organic light-emitting diode (OLED) performances. However, the operational lifetime of current exciplex-based devices, unfortunately, falls far behind the requirement for commercialization. Herein, rationally choosing a TADF-type electron acceptor molecule is reported as a new strategy to enhance OLEDs' operating lifetime. A comprehensive study of the exciplex system containing 9,9 ',9 ''-triphenyl-9H,9 ' H,9 '' H-3,3 ':6 ',3 ''-tercarbazole (Tris-PCz) and triazine (TRZ) derivatives clarifies the relationship between unwanted carrier recombination on acceptor molecules, TADF property of acceptors, and the device degradation event. By employing a proposed exciton recycling strategy, a threefold increased operational lifetime can be achieved while still maintaining high-performance OLED properties. In particular, a stable blue OLED that employs this strategy is successfully demonstrated. This research provides an important step for exciplex-based devices toward the significant improvement of operational stability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据