4.8 Article

Draining Over Blocking: Nano-Composite Janus Separators for Mitigating Internal Shorting of Lithium Batteries

期刊

ADVANCED MATERIALS
卷 32, 期 12, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201906836

关键词

battery safety; battery separators; dendrite interception; internal short circuits; lithium metal

向作者/读者索取更多资源

Catastrophic battery failure due to internal short is extremely difficult to detect and mitigate. In order to enable the next-generation lithium-metal batteries, a fail safe mechanism for internal short is highly desirable. Here, a novel separator design and approach is introduced to mitigate the effects of an internal short circuit by limiting the self-discharge current to prevent cell temperature rise. A nano-composite Janus separator-with a fully electronically insulating side contacting the anode and a partially electronically conductive (PEC) coating with tunable conductivity contacting the cathode-is implemented to intercept dendrites, control internal short circuit resistance, and slowly drain cell capacity. Galvanostatic cycling experiments demonstrate Li-metal batteries with the Janus separator perform normally before shorting, which then results in a gradual increase of internal self-discharge over >25 cycles due to PEC-mitigated shorting. This is contrasted by a sudden voltage drop and complete failure seen with a single layer separator. Potentiostatic charging abuse tests of Li-metal pouch cells result in dendrites completely penetrating the single-layer separator causing high short circuit current and large cell temperature increase; conversely, negligible current and temperature rise occurs with the Janus separator where post mortem electron microscopy shows the PEC layer successfully intercepts dendrites.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据