4.8 Article

Ultrathin Amorphous Silica Membrane Enhances Proton Transfer across Solid-to-Solid Interfaces of Stacked Metal Oxide Nanolayers while Blocking Oxygen

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 30, 期 12, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201909262

关键词

incompatible catalysis environments; nanoscale integration; proton transfer; solid-solid interfaces; stacked metal oxide nanolayers; ultrathin silica layer

资金

  1. Energy & Biosciences Institute through the EBI-Shell program
  2. Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]

向作者/读者索取更多资源

A large jump of proton transfer rates across solid-to-solid interfaces by inserting an ultrathin amorphous silica layer into stacked metal oxide nanolayers is discovered using electrochemical impedance spectroscopy and Fourier-transform infrared reflection absorption spectroscopy (FT-IRRAS). The triple stacked nanolayers of Co3O4, SiO2, and TiO2 prepared by atomic layer deposition (ALD) enable a proton flux of 2400 +/- 60 s(-1) nm(-2) (pH 4, room temperature), while a single TiO2 (5 nm) layer exhibits a threefold lower flux of 830 s(-1) nm(-2). Based on FT-IRRAS measurements, this remarkable enhancement is proposed to originate from the sandwiched silica layer forming interfacial SiOTi and SiOCo linkages to TiO2 and Co3O4 nanolayers, respectively, with the O bridges providing fast H+ hopping pathways across the solid-to-solid interfaces. Together with the complete O-2 impermeability of a 2 nm ALD-grown SiO2 layer, the high flux for proton transport across multi-stack metal oxide layers opens up the integration of incompatible catalytic environments to form functional nanoscale assemblies such as artificial photosystems for CO2 reduction by H2O.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据