4.8 Article

Atomic Vacancy Control and Elemental Substitution in a Monolayer Molybdenum Disulfide for High Performance Optoelectronic Device Arrays

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 30, 期 11, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201908147

关键词

defect engineering; elemental substitution; molybdenum disulfides; transition metal dichalcogenides; vacancy control

资金

  1. Samsung Research Funding & Incubation Center of Samsung Electronics [SRFC-MA1402-10]
  2. Creative Materials Discovery Program through the National Research Foundation of Korea (NRF) - Ministry of Science and ICT [2017M3D1A1040828]
  3. Basic Science Research Program through the NRF - Ministry of Education [2015R1D1A1A01058982]
  4. Global Frontier Program through the Global Frontier Hybrid Interface Materials (GFHIM) of the NRF - Ministry of Science, ICT & Future Planning [NRF-2013M3A6B1078873]
  5. National Research Foundation of Korea [2013M3A6B1078873] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Defect engineering of 2D transition metal dichalcogenides (TMDCs) is essential to modulate their optoelectrical functionalities, but there are only a few reports on defect-engineered TMDC device arrays. Herein, the atomic vacancy control and elemental substitution in a chemical vapor deposition (CVD)-grown molybdenum disulfide (MoS2) monolayer via mild photon irradiation under controlled atmospheres are reported. Raman spectroscopy, photoluminescence, X-ray, and ultraviolet photoelectron spectroscopy comprehensively demonstrate that the well-controlled photoactivation delicately modulates the sulfur-to-molybdenum ratio as well as the work function of a MoS2 monolayer. Furthermore, the atomic-resolution scanning transmission electron microscopy directly confirms that small portions (2-4 at% corresponding to the defect density of 4.6 x 10(12) to 9.2 x 10(13) cm(-2)) of sulfur vacancies and oxygen substituents are generated in the MoS2 while the overall atomic-scale structural integrity is well preserved. Electronic and optoelectronic device arrays are also realized using the defect-engineered CVD-grown MoS2, and it is further confirmed that the well-defined sulfur vacancies and oxygen substituents effectively give rise to the selective n- and p-doping in the MoS2, respectively, without the trade-off in device performance. In particular, low-percentage oxygen-doped MoS2 devices show outstanding optoelectrical performance, achieving a detectivity of approximate to 10(13) Jones and rise/decay times of 0.62 and 2.94 s, respectively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据