4.8 Article

δ-CsPbI3 Intermediate Phase Growth Assisted Sequential Deposition Boosts Stable and High-Efficiency Triple Cation Perovskite Solar Cells

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 30, 期 7, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201908343

关键词

CsPbI3 intermediate phase growth; grain growth; perovskite solar cells; sequential deposition; stability; triple cation perovskite

资金

  1. Hubei Provincial Natural Science Foundation of China [2018CFB508]
  2. National Natural Science Foundation of China [61404060]
  3. Wuhan Youth Science and Technology Program [2015071704011602]
  4. Science and Technology Department of Hubei Province [2019AAA020]
  5. National Postdoctoral Program for Innovation Talents [BX201700103]

向作者/读者索取更多资源

Cs/FA/MA triple cation perovskite films have been well developed in the antisolvent dripping method, attributable to its outstanding photovoltaic and stability performances. However, a facile and effective strategy is still lacking for fabricating high-quality large-grain triple cation perovskite films via sequential deposition method a, which is one of the key technologies for high efficiency perovskite solar cells. To address this issue, a delta-CsPbI3 intermediate phase growth (CsPbI3-IPG) assisted sequential deposition method is demonstrated for the first time. The approach not only achieves incorporation of controllable cesium into (FAPbI(3))(1-x)(MAPbBr(3))(x) perovskite, but also enlarges the perovskite grains, manipulates the crystallization, modulates the bandgap, and improves the stability of final perovskite films. The photovoltaic performances of the devices based on these Cs/FA/MA perovskite films with various amounts of the delta-CsPbI3 intermediate phase are investigated systematically. Benefiting from moderate cesium incorporation and intermediate phase-assisted grain growth, the optimized Cs/FA/MA perovskite solar cells exhibit a significantly improved power conversion efficiency and operational stability of unencapsulated devices. This facile strategy provides new insights into the compositional engineering of triple or quadruple cation perovskite materials with enlarged grains and superior stability via a sequential deposition method.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据