4.7 Article

Integrated analysis of miRNA and mRNA expression profiles in tilapia gonads at an early stage of sex differentiation

期刊

BMC GENOMICS
卷 17, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/s12864-016-2636-z

关键词

miRNA; mRNA; Tilapia; Early sex differentiation

资金

  1. National Natural Science Foundation of China [91331119, 31502147, 31572609, 31030063]
  2. National High Technology Research and Development Program (863 program) of China [2011AA100404]
  3. National Basic Research Program of China [2012CB723205]
  4. Specialized Research Fund for the Doctoral Program of Higher Education of China [20130182130003]
  5. Natural Science Foundation Project of Chongqing, Chongqing Science and Technology Commission [cstc2013kjrc-tdjs80003, cstc2014jcyjA80001]
  6. Fundamental Research Funds for the Central Universities [XDJK2016B011, XDJK2016A003, XDJK2014B040, XDJK2015A004]

向作者/读者索取更多资源

Background: MicroRNAs (miRNAs) represent a second regulatory network that has important effects on gene expression and protein translation during biological process. However, the possible role of miRNAs in the early stages of fish sex differentiation is not well understood. In this study, we carried an integrated analysis of miRNA and mRNA expression profiles to explore their possibly regulatory patterns at the critical stage of sex differentiation in tilapia. Results: We identified 279 pre-miRNA genes in tilapia genome, which were highly conserved in other fish species. Based on small RNA library sequencing, we identified 635 mature miRNAs in tilapia gonads, in which 62 and 49 miRNAs showed higher expression in XX and XY gonads, respectively. The predicted targets of these sex-biased miRNAs (e.g., miR-9, miR-21, miR-30a, miR-96, miR-200b, miR-212 and miR-7977) included genes encoding key enzymes in steroidogenic pathways (Cyp11a1, Hsd3b, Cyp19a1a, Hsd11b) and key molecules involved in vertebrate sex differentiation (Foxl2, Amh, Star1, Sf1, Dmrt1, and Gsdf). These genes also showed sex-biased expression in tilapia gonads at 5 dah. Some miRNAs (e.g., miR-96 and miR-737) targeted multiple genes involved in steroid synthesis, suggesting a complex miRNA regulatory network during early sex differentiation in this fish. Conclusions: The sequence and expression patterns of most miRNAs in tilapia are conserved in fishes, indicating the basic functions of vertebrate miRNAs might share a common evolutionary origin. This comprehensive analysis of miRNA and mRNA at the early stage of molecular sex differentiation in tilapia XX and XY gonads lead to the discovery of differentially expressed miRNAs and their putative targets, which will facilitate studies of the regulatory network of molecular sex determination and differentiation in fishes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据