4.7 Article

Exploring the protective effects of schizandrol A in acute myocardial ischemia mice by comprehensive metabolomics profiling integrated with molecular mechanism studies

期刊

ACTA PHARMACOLOGICA SINICA
卷 41, 期 8, 页码 1058-1072

出版社

NATURE PUBL GROUP
DOI: 10.1038/s41401-020-0377-7

关键词

schizandrol A; cardioprotective effect; acute myocardial ischemia mice; OGD-treated H9c2 cardiomycytes; metabonomics; metabolic pathways; therapeutic targets

资金

  1. National Natural Science Foundation of China [81973506, 81603328, 81774150, 81573719]
  2. Natural Science Foundation of Jiangsu Province [BK20160761]
  3. China Postdoctoral Science Foundation [2016M600456, 2017T100425]
  4. Double First-Class University Project [CPU2018GF06, CPU2018GF07]

向作者/读者索取更多资源

Schizandrol A (SA) is an bioactive component isolated from the Schisandra chinensis (Turcz.) Baill., which has been used as a remedy to prevent oxidative injury. However, whether the cardioprotective effect of SA is associated with regulating endogenous metabolites remains unclear, thus we performed comprehensive metabolomics profiling in acute myocardial ischemia (AMI) mice following SA treatment. AMI was induced in ICR mice by coronary artery ligation, then SA (6 mg center dot kg(-1)center dot d(-1), ip) was administered. SA treatment significantly decreased the infarct size, preserved the cardiac function, and improved the biochemical indicators and cardiac pathological alterations. Moreover, SA (10, 100 M) significantly decreased the apoptotic index in OGD-treated H8c2 cardiomycytes in vitro. By using HPLC-Q-TOF/MS, we conducted metabonomics analysis to screen the significantly changed endogenous metabolites and construct the network in both serum and urine. The results revealed that SA regulated the pathways of glycine, serine and threonine metabolism, lysine biosynthesis, pyrimidine metabolism, arginine and proline metabolism, cysteine and methionine metabolism, valine, leucine and isoleucine biosynthesis under the pathological conditions of AMI. Furthermore, we selected the regulatory enzymes related to heart disease, including ecto-5'-nucleotidase (NT5E), guanidinoacetate N-methyltransferase (GAMT), platelet-derived endothelial cell growth factor (PD-ECGF) and methionine synthase (MTR), for validation. In addition, SA was found to facilitate PI3K/Akt activation and inhibit the expression of NOX2 in AMI mice and OGD-treated H9c2 cells. In conclusion, we have elucidated SA-regulated endogenous metabolic pathways and constructed a regulatory metabolic network map. Furthermore, we have validated the new potential therapeutic targets and underlying molecular mechanisms of SA against AMI, which might provide a reference for its future application in cardiovascular diseases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据