4.7 Article

Quantifying oxygen vacancies in neodymium and samarium doped ceria from heat capacity measurements

期刊

ACTA MATERIALIA
卷 188, 期 -, 页码 740-744

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2020.02.055

关键词

SOFC; Vacancy clustering; Cerium oxide; Specific heat; Lattice defects

资金

  1. U.S. Department of Energy [DE-FG02-03ER46053]
  2. U.S. Department of Energy (DOE) [DE-FG02-03ER46053] Funding Source: U.S. Department of Energy (DOE)

向作者/读者索取更多资源

It has been previously reported in the literature that the vacancy concentration in a solid can be estimated using the linear term derived from low temperature heat capacity measurements. This paper investigates how such a model performs in both random and partially clustered vacancy systems. The heat capacity measurements were used to investigate the effect of singly (Nd or Sm) doped and co-doped (Nd and Sm) ceria, where simultaneous doping affects vacancy clustering and ionic conductivity. Comparison of calculated vacancy concentrations with sample stoichiometries showed that a vacancy concentration based on the linear term in the low temperature heat capacity is quantitative for near randomly distributed vacancies at low dopant concentration, but the prediction is low by approximately an order of magnitude when vacancies become clustered at higher dopant levels. This confirms that the linear term in the low-temperature heat capacity for non-metallic materials is a viable approach to estimate the vacancy concentration for randomly distributed vacancies which, in turn, can be used to distinguish between the random versus clustered vacancies. (C) 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据