4.7 Article

Deformation in nanocrystalline ceramics: A microstructural study of MgAl2O4

期刊

ACTA MATERIALIA
卷 183, 期 -, 页码 137-144

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2019.11.015

关键词

Nanocrystalline ceramics; Indentation; Dislocations; Grain boundary sliding; Grain rotation; Shear bands

向作者/读者索取更多资源

Contrary to the characteristic strengthening of polycrystalline ceramics with a decrease in grain size, extremely fine nanocrystalline ceramics exhibit softening, increased plasticity and an inverse Hall-Petch relation. Despite experimental evidence, questions remain regarding the underlying deformation mechanisms governing this abnormal mechanical behavior. In the present study, an in-depth microstructural examination was performed on nanostructured transparent magnesium aluminate spinel (MgAl2O4) subjected to microhardness tests. Microstructural observations revealed regions strained to various degrees below the point of indentation, containing varying amounts of dislocations and nano-cavities. Furthermore, the residual strain in different areas was estimated by local electron diffraction. These observations and analysis provided evidence for grain boundary (GB) mediated mechanisms (e.g., GB sliding and rotation). Moreover, shear bands formed and were found to be associated with micro-cracking. By combining the microstructural analysis with suitable models, it was concluded that these mechanisms govern plastic deformation. By elucidating how strain is accommodated within nanocrystalline ceramics, a deeper understanding of their unique mechanical behavior is gained. (C) 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据