4.8 Article

Multifunctional carboxymethyl chitosan derivatives-layered double hydroxide hybrid nanocomposites for efficient drug delivery to the posterior segment of the eye

期刊

ACTA BIOMATERIALIA
卷 104, 期 -, 页码 104-114

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2020.01.008

关键词

Layered double hydroxide; Carboxymethyl chitosan derivatives; Peptide transporter-1; Efficient ocular drug delivery; Posterior segment of the eye

资金

  1. National Natural Science Foundation of China [81373362]

向作者/读者索取更多资源

Efficient ocular drug delivery to the posterior segment of the eye by topical administration is a great challenge to pharmacologists. To explore drug delivery system of organic-inorganic hybrid nanocomposites for the efficient delivery of dexamethasone disodium phosphate (DEXP), a targeted hybrid nanocomposite based on layered double hydroxide (LDH) and functional carboxymethyl chitosan (CMCS) derivatives was designed. A special substrate of peptide transporter-1 (PepT-1) and glutathione was modified on CMCS. CMCS-glutathione-glycylsarcosine (CMCG-GS) and CMCS-glutathione-valyl-valine (CMCG-W)-LDH hybrid nanocomposites were prepared and structurally confirmed. The in vitro experiments on human conjunctival epithelial cells showed noncytotoxicity (LDH concentration <= 100.0 mu g/mL) and enhanced permeability for hybrid nanocomposites. Additionally, cellular uptake of the CMCG-GS-DEXP-LDH (10:1) nanocomposite eye drops involved clathrin-mediated endocytosis and PepT-1 mediated actively targeting transport. Results of the in vivo precorneal retention study showed an 8.35-fold, 2.87-fold and 2.58-fold increase of AUC(0-)6 h, C-max and MRT for CMCG-GS-DEXP-LDH (10:1) hybrid nanocomposite eye drops, respectively, compared to that of the commercial product. Fluorescence imaging of fluorescein isothiocyanate isome (FITC)-loaded LDH hybrid nanocomposites demonstrated that FITC could diffuse into the choroid-retina with the shelter of LDH and CMCG-GS. The presence of a strong fluorescence signal of FITC-conjugated LDH hybrid nanocomposites in the sclera revealed that integral LDH nanocarrier reached the sclera. In the tissue distribution evaluation of rabbit's eyes, DEXP of CMCG-GS-DEXP-LDH (10:1) nanocomposites group retained in the target of the choroid-retina for 3 h with final concentration at 120.04 ng/g. Furthermore, the results of fluorescence imaging and tissue distribution suggested that the intraocular transport pathway for the hybrid nanocomposites is the conjunctival-scleral route. Consequently, the developed hybrid nanocomposites offer a simple and efficient strategy for topically administered drug delivery to the posterior segment of the eye. Statement of Significance Efficient ocular drug delivery to the posterior segment of the eye by topical administration is a great challenge to pharmacologists. In this manuscript, hybrid nanocomposite based on layered double hydroxide (LDH) and functional carboxymethyl chitosan (CMCS) derivatives were designed. The multifunctional properties of these hybrid nanocomposites were attributed to active targeting, bioadhesive capacity and penetration enhancement. Visualization of transport routes of fluorescein isothiocyanate-conjugated LDH hybrid nanocomposites demonstrated that the integral LDH nanocarrier reached the sclera through the conjunctival-scleral pathway, and the loaded drug could further diffuse to the retina. The multifunctional CMCS derivatives-LDH hybrid nanocomposites could be applied for the efficient drug delivery to the posterior segment of the eye through noninvasive topical instillation. (C) 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据