4.8 Article

Biocompatible chitosan-carbon nanocage hybrids for sustained drug release and highly efficient laser and microwave co-irradiation induced cancer therapy

期刊

ACTA BIOMATERIALIA
卷 103, 期 -, 页码 237-246

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2019.12.010

关键词

Graphitic carbon nanocages; Low cytotoxicity; Sustained drug release; Laser microwave co-irradiation; Cancer therapy

资金

  1. National Natural Science Foundation of China [31370961, 31570960]
  2. Science and Technology Innovation Foundation of Shanghai [13NM1402000]

向作者/读者索取更多资源

Graphitic carbon nanocages (GCNCs) are unique graphene-based nanomaterials that can be used for cancer photothermal therapy (PTT). However, low toxicity GCNC-based organic/inorganic hybrid biomaterials for microwave irradiation assisted PTT have not yet been reported. In the present study, chitosan (CS)-coated GCNCs (CS-GCNCs) loaded with 5-fluorouracil (5Fu) were used for cancer therapy when activated by 808-nm laser and microwave co-irradiation. The cytotoxicity of GCNCs was significantly reduced after coating with CS. For example, fewer cell-cycle defects were caused by CS-GCNCs in comparison with non-coated GCNCs. The release rate of 5Fu from CS-GCNCs was significantly slower than that of 5Fu from GCNCs, providing sustained release. The release rate could be accelerated by 808-nm laser and microwave co-irradiation. The 5Fu in CS-GCNCs retained high cancer cell killing bioactivity by enhancing the caspase-3 expression level. The cancer cell killing and tumor inhibition efficiencies of the 5Fu-loaded nanomaterials increased significantly under 808-nm laser and microwave co-irradiation. The strong cell killing and tumor ablation activities were due to the synergy of the enhanced GCNC thermal effect caused by laser and microwave co-irradiation and the chemotherapy of 5Fu. Our research opens a door for the development of drug-loaded GCNC-based nano-biomaterials for chemo-photothermal synergistic therapy with the assistance of microwave irradiation. Statement of Significance Graphitic carbon nanocages (GCNCs) are graphene-based nanomaterials that can be used for both drug loading and cancer photothermal therapy (PIT). Herein, we showed that chitosan (CS)-GCNCs hybrid biomaterials had very low cytotoxicity, high ability for loading drug, and exhibited sustained drug release. In particular, although low-power microwaves alone are unable to trigger cancer cell damage by GCNCs, the cell killing and mouse tumor inhibition efficiencies were significantly improved by near-infrared (NIR) laser and microwave co-irradiation compared with laser-triggered PTT alone. This combined use of laser and microwave co-irradiation promises essential therapeutic modality and opens a new avenue for PTT. (C) 2019 Published by Elsevier Ltd on behalf of Acta Materialia Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据