4.8 Article

ROS and GSH-responsive S-nitrosoglutathione functionalized polymeric nanoparticles to overcome multidrug resistance in cancer

期刊

ACTA BIOMATERIALIA
卷 103, 期 -, 页码 259-271

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2019.12.016

关键词

Nitric oxide; Multidrug resistance of cancer; Reactive oxygen species-responsive; Glutathione-responsive; S-nitrosoglutathione

资金

  1. National Natural Science Foundation of China [21602024]
  2. Fundamental Research Funds for the Central Universities [2018CDYXYX0027, 0247001104416]

向作者/读者索取更多资源

Multidrug resistance of cancer cells is one of the major obstacle for chemotherapeutic efficiency. Nitric oxide (NO) has raised the potential to overcome multidrug resistance (MDR) with low side effects. Herein, we report a reactive oxygen species (ROS) and glutathione (GSH) responsive nanoparticle for the delivery of NO prodrug such as S-nitrosoglutathione (GSNO), which was chemically conjugated to an amphiphilic block copolymer. The GSNO functionalized nanoparticles show high NO loading capacity, good stability and sustained NO release with specific GSH activated NO-releasing kinetics. Such GSNO functionalized nanoparticles delivered doxorubicin (DOX) in a ROS triggered manner and increased the intracellular accumulation of DOX. However, in normal healthy cells, showing physiological concentrations of ROS, these nanoparticles presented good biocompatibility. The present work indicated that these multifunctional nanoparticles can serve as effective co-delivery platforms of NO and DOX to selectively kill chemo-resistant cancer cells through increasing chemo-sensitivity. Statement of significance In this work, we constructed nitric oxide donor (S-nitrosoglutathione, GSNO) functionalized amphiphilic copolymer (PEG-PPS-GSNO) to deliver doxorubicin (DOX). The developed PEG-PPS-GSNO@DOX nanoparticles presented high NO capacity, ROS triggered DOX release and GSH triggered NO release. Thus NO reversed the chemo-resistance in HepG2/ADR cells increasing intrcellular accumulation of DOX. Furthermore, these PEG-PPS-GSNO@DOX nanoparticles exhibited biocompatibility to healthy cells and toxicity to cancer cells, due to elevated ROS. (C) 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据