4.8 Article

Low-Resource Nucleic Acid Extraction Method Enabled by High-Gradient Magnetic Separation

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 12, 期 11, 页码 12457-12467

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.9b21564

关键词

sample preparation; low-resource; nucleic acid extraction; high-gradient magnetic separation; magnetic bead separation; qPCR; tuberculosis

资金

  1. Bill and Melinda Gates Foundation [OPP1172605]
  2. National Institutes of Health [R01 AI135937]
  3. Bill and Melinda Gates Foundation [OPP1172605] Funding Source: Bill and Melinda Gates Foundation

向作者/读者索取更多资源

Nucleic acid-based diagnostic tests often require isolation and concentration of nucleic acids from biological samples. Commercial purification kits are difficult to use in low-resource settings because of their cost and insufficient laboratory infrastructure. Several recent approaches based on the use of magnetic beads offer a potential solution but remain limited to small volume samples. We have developed a simple and low-cost nucleic acid extraction method suitable for isolation and concentration of nucleic acids from small or large sample volumes. The method uses magnetic beads, a transfer pipette, steel wool, and an external magnet to implement high-gradient magnetic separation (HGMS) to retain nucleic acid-magnetic bead complexes within the device's steel wool matrix for subsequent processing steps. We demonstrate the method's utility by extracting tuberculosis DNA from both sputum and urine, two typical large volume sample matrices (5-200 mL), using guanidine-based extraction chemistry. Our HGMS-enabled extraction method is statistically indistinguishable from commercial extraction kits when detecting a spiked 123-base DNA sequence. For our HGMS-enabled extraction method, we obtained extraction efficiencies for sputum and urine of approximately 10 and 90%, whereas commercial kits obtained 10-17 and 70-96%, respectively. We also used this method previously in a blinded sample preparation comparison study published by Beall et al., 2019. Our manual extraction method is insensitive to high flow rates and sample viscosity, with capture of similar to 100% for flow rates up to 45 mL/min and viscosities up to 55 cP, possibly making it suitable for a wide variety of sample volumes and types and point-of-care users. This HGMS-enabled extraction method provides a robust instrument-free method for magnetic bead-based nucleic acid extraction, potentially suitable for field implementation of nucleic acid testing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据