4.8 Article

Area-Selective ALD of Ru on Nanometer-Scale Cu Lines through Dimerization of Amino-Functionalized Alkoxy Silane Passivation Films

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 12, 期 4, 页码 4678-4688

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.9b14596

关键词

surface functionalization; area-selective deposition; self-assembled monolayers; siloxane precursors; amino groups; ruthenium; ALD

资金

  1. Electronic Component Systems for European Leadership Joint Undertaking [783247]
  2. European Union's Horizon 2020 research and innovation program

向作者/读者索取更多资源

The selective deposition of materials on predefined areas on a substrate is of crucial importance for various applications, such as energy harvesting, microelectronic device fabrication, and catalysis. A representative example of area-confined deposition is the selective deposition of a metal film as the interconnect material in multilevel metallization schemes for CMOS technology. This allows the formation of multilevel structures with standard lithographical techniques while minimizing pattern misalignment and overlay and improving the uniformity of the structures across the wafer. In this work, area-selective deposition of Ru by atomic layer deposition (ALD) is investigated using alkoxy siloxane dielectric passivation layers. In this work, a comparison of several silane organic SAM precursors in terms of Ru ALD ASD performance is reported. The importance of the surface areal concentration of the passivation molecules is demonstrated. According to the in situ X-ray photoelectron spectroscopy film characterization, the ALD blocking layers derived from a (3-trimethoxysilylpropyl) diethylenetriamine (DETA) precursor have the ability to polymerize under ALD-compatible temperatures, such as 250 degrees C, which leads to a significant inhibition of Ru growth up to 400 ALD cycles. At the same time, the DETA layer can be selectively removed from the oxidized Cu surface by rinsing in acetic acid, which allows selective deposition of ca. 14 nm of Ru on Cu with no Ru detected on the DETA-coated surface by RBS. The approach is successfully tested on 50 nm half-pitch patterned SiO2/Cu lines.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据