4.8 Article

Triple Amplification of 3,4,9,10-Perylenetetracarboxylic Acid by Co2+-Based Metal-Organic Frameworks and Silver-Cysteine and Its Potential Application for Ultrasensitive Assay of Procalcitonin

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 12, 期 8, 页码 9098-9106

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.9b23248

关键词

biosensor; procalcitonin; signal amplification; ZIF-67; co-reaction accelerator

资金

  1. National Key Scientific Instrument and Equipment Development Project of China [21627809]
  2. National Natural Science Foundation of China [21575050, 21777056]

向作者/读者索取更多资源

In this work, a triple-amplified biosensor with a bioactivity-maintained peculiarity was constructed for quantitative procalcitonin (PCT) detection. As everyone knows, a strong electrochemiluminescence (ECL) signal is the premise to ensure high sensitivity for trace target detection. Hence, a valid tactic was developed to achieve signal amplification of luminophor by using Co2+-based metal-organic frameworks (ZIF-67) and silver-cysteine (AgCys). The ZIF-67 particles, which have more atomically dispersed Co2+, could play the role of a co-reaction accelerator to catalyze S2O82- to generate abundant Co3+ and sulfate radical anions (SO4 center dot-) Afterward, a mass of Co3+ was reduced to more hydroxyl radicals (OH center dot) by H2O, thus ulteriorly reducing S2O82- to generate more SO4 center dot-. Remarkably, S2O82- was reduced to SO4 center dot- continuously with the recycling of Co2+ and Co3+, which realized an effective signal amplification. Meanwhile, the AgCys complex with superior catalysis and biocompatibility was prepared to further improve the ECL signal and maintain the bioactivity of the biomolecule. Furthermore, HWRGWVC, a heptapeptide that was used for combining the Fc fragments of an antibody by Au-S bonding to achieve the fixed point fixation, could not only maintain bioactivity of an antibody but also improved its incubation efficiency, thus further enhancing biosensor sensitivity. Under optimum conditions, the proposed biosensor realized highly sensitive assay for PCT with a wide dynamic range from 10 fg/mL to 100 ng/mL and a detection limit as low as 3.67 fg/mL. With superior stability, selectivity, and repeatability, the prepared biosensor revealed immense potential application of ultrasensitive assay for PCT in human serum.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据